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Excitation spectrum and critical exponents 
of a one-dimensional integrable model of fermions 
with correlated hopping* 

R Z Barievt, A Kliimper, A Schadschneider, and J Zittartz 
lnstiult Nr Thwretische Physik, UniversiuU m Koln, ZtUpicher S m s e  77, D-50937 Kiiln, 
Federal Republic of Germany 

Received 5 May 1993 

Abstract We investigate the excitation specmm of a model of N colour fermions with 
correlated hopping which can be solved by a nested Belhe ansalz. The gapless excitations 
of paniclehole type are calculated as well as the spin-wave Like excitations which have a 
gap. Using general predictions of mnfomal field theow the long dismce behaviour of some 
gmundstate correlation functions are derived from a finite-size analysis of the gapless excitations. 
From the algebraic decay we show that for increasing panicle density the correlation of so- 
called N-multiplets of panicles dominares over the density-density correlation. This indicates 
the presence of bound complexes of lhese N-multiplets. This piclure is also supported by the 
calculation of the effective mass of charge carrim 

1. Introduction 

The study of low-dimensional electronic systems with strong correlations has gained 
considerable importance due to the discovery of high-temperature superconductivity. The 
models which have been mostly studied are the one-dimensional Hubbard model [I] and 
the t-J model [2,3] at its supersymmetric point. These models are special because of 
their integrability [4-71. A p a t  deal of current research is directed to more extensive 
rigorous and exact results on correlated systems in one and two dimensions. However, in 
the latter case exact results are sparse. In contrast to this we have a different situation in 
one dimension where many models are integrable and show different physical behaviour. 

In this paper we continue the study of a fermionic model with correlated hopping [8]. 
In addition to on-site Coulomb interactions as in the above mentioned cases we are 
interested in modifications of the hopping terms of fermions in the vicinity of other particles. 
Unfortunately, such complex models are not integrable in general. However, for purely 
correlated hopping the situation looks much better. In [9] an integrable model of electrons 
was found which was generalized to fermions with arbitrary number N > 2 of colours [lo]. 
The Hamiltonian of this model is given by 

L N  N 

j=l r=1 r’= I 
r’#r 

H = -CC(cTzc j+ , . r  + cf+l,rcj.r) exp(-n ~ j + ~ ~ z - z ‘ ~ , r ’  ) (1) 
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where L is the length of the chain, czr and cj,. are the creation and annihilation operators 
of fermions of colour r at site j (T = 1, . . . , N and j = 1,. . . , L), nj,z is the number 
operator and B is the step function 

R Z Bnriev et ai 

We employ the usual periodic boundary conditions  CL+^,^ = cl,<. Repulsion of particles 
corresponds to an interaction parameter q > 0. In [SI the case N = 2 of model (1) 
was investigated, however, for negative values of q.  Note that q and -q are related by 
a particle-hole transformation. Using a Jordan-Wigner transformation the model can be 
formulated equivalently as a system of N interacting XY chains [IO]. 

In section 2 we give a summary of the Bethe Ansatz equations and some groundstate 
properties. In section 3 we study the excitations of the model. In section 4 we derive 
the long-distance behaviour of correlation functions and compare the results with previous 
ones [SI for the special case of N = 2. In the appendix a short-cut to the analysis of Bethe 
Ansatz equations is presented on the basis of inversion identities. 

2. The Bethe ansatz 

The Bethe ansa for this model has been derived in [IO] from which we quote the relevant 
equations. The eigenstates of the Hamiltonian are characterized by sets of wavenumbers 
kj ,  j = 1,. . . , N, for N particles. There are additional Bethe ansatz parameters A$’ 
(r = 1,. . . , N - 1 and (Y = 1,. . . , M N - ~ )  the number of which is given by 

where $ denotes the number of particles of colour j .  The parameters kj and A$’ satisfy 
the set of nested Bethe ansatz equations derived in [lo] 

with j = 1 ,..., N, r = 1 ,..., N - 1; (Y = 1 ,..., M ~ - ~ , a n d  we have set A Y  = k j .  The 
phase shift function 0 is given by 

(5 )  

and f j  and J$’ are integer olalf-integer) numbers for odd (even) MN-I + 1 and M,-l +&I, 
respectively. The energy and momentum of the corresponding state are given by 

O(k; q) = 2tan-’(cothqtan ik) --x < 0 < -X 

N 
E = - 2 ~ c o s k j  

j = l  
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It follows by symmetry that the ground state corresponds to symmetric configurations 
with the same number of particles N;. for all colours i 

N - -  l < i < N .  (7) 
N 

I - -  N 
The ground state energy is calculated from (4H6) in the thermodynamic limit [lo] 

-= -2  Eo L coskp(k)dk (8) L 
where the density function p(k) is determined as the solution of the integral equation 

zYrp(k) - J K  q ( k  - k’)p(k’) dk’ = 1 
- K  

m sinh[nq(N - l)] 
cos(nk) 

1 
N ll=l sinh(nqN) 

p(k) = I - - + z z e x p ( - n q )  

and K is determined by the subsidiary condition 
,K 

Equations (8x10)  determine the ground state energy of the model as a function of the 
particle density p. The appendix contains a derivation of (8x10)  from ( 4 x 6 )  which is 
slightly different from the original treatment in [lo]. 

In (7) we have assumed N a multiple of N. This in fact is the condition for a proper 
accomcdation of the ‘antiferromagnetic’ ground state. For particle numbers N not multiples 
of N we always have a misfit resulting in ‘spin-type’ excitations which are treated below. 
This kind of excitations has a non-zero gap by which the bulk energies of the ground states 
of systems with N not multiples of N are increased. 

3. Excited states 

The system of Bethe ansatz equations (4) admits many solutions depending on the choice of 
the parameters I j  and J Z ) .  In particular the solution for the ground state (8) is characterized 
by a parameter set in which the Zj and Jf) are consecutive integers (or half-integers) centred 
around the origin. It is expected that the low-lying states are obtained by small modifications 
to these configurations. 

There are two types of elemenmy excitations leaving the particle number unchanged. 
The first one is of particlshole type corresponding to raising one pseudo-particle in the 
ground state ikhl < K to a higher level > K .  This excitation is obtained by a straight 
forward manipulation of the set of numbers fj without changing the parameters Jf). This 
produces gapless excitations analogous to those in the antiferromagnetic spin-: Heisenberg 
chain [ l l , l2 ]  and in the repulsive Hubbard model [13-151. In the thermodynamic limit 
energy and momentum of these excitations are given by 

” 
E -  E o = E ~ ( k , ? ) - x c ( k j h )  

j=l j=1 
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with energy-momentum dispersion of particle-hole excitations 

R Z Bariev et al 

The function j(k) is the solution of the integral equation 

K 
2rrj(k) - l K q ( k - ~ ) j ( k ' ) ~ ' =  o ( ~ - o )  

where W ( k )  = (o(k). Alternatively, the dressed energy function E can be obtained directly 
from an integral equation identical to the last one upon the replacement of j(k) and 
O ( k - O ) / 2 x  by E@) and E&) = -2cosk, respectively. In general (13) can be solved only 
numerically. In certain limiting cases also analytic results can be obtained. For instance, in 
the strong-coupling limit ( q  + CO) perturbation theory yields 

e($) = -Z[1 +e(. - ~sin2K)](cosO + &nK - Kcos K) 
(14) 

N - I  

x n 

x 2 e - = n  sin K t sin K +o(~-~?) t = - . 
P @ )  = '-t x - K r  N 

The excitations of the second type involve 'r-holes' and 'strings' in the sets A:). A 
'r-hole' occurs when there is a jump in the sequence of J f ) .  Physically it describes states 
where the colour of one bare particle has been changed. In a sense these excitations are 
of spin-wave type, but have a non-zero gap. The general energy-momentum excitation is 
given by N - 1 different dispersion functions 

Each elementary excitation parametrized with a rapidity variable V is given by 

where j(k) is the solution of an integral equation of the type (13). however, with a different 
right-hand side 

2 n j ~  - J_X, q(k  - k') j(K) &' = q ( ~ - r ) ( k  - 9)  (17) 
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N=2 

P 

Figure 1. Left p a n :  plot of the gap of the massive excitations as a function of the particle 
density p for N = 2 and different interaction strengths 0 = 0.5, I ,  2, m. Right p m  the 
excitation gap for the four massive dispersions in the CaSe N = 5 and 4 = 1. 

where 

N - r  -k+2z sinh(nqN) n N 
sinh[nq(N - r)] sin(nk) p"-"(k) = 

."=I 

The lowest energies A(') of (16) are taken at B = E .  In figure 1 the gaps are shown for 
different values of N and q in dependence of the particle density p. Not all combinations 
of the elementary excitations (16) are allowed, the numbers U, in (IS) have to satisfy a 
selection rule 

For a derivation of (17) and (18) utilizing inversion identities see the appendix. In 
general (16). (17) have to be solved numerically. In the strong-coupling limit ( r ~  --f CO) the 
analytic solution of (1 6H 18) is 

N - r  
ZN T2 = - (sin K - K cos K) 

In addition to simple holes excited states may also contain conjugate pairs of complex 
A t ) .  The additional 'strings' do not contribute to energy and momentum which effect is 
very transparent in the inversion identity approach, see the appendix. Such a cancellation 
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phenomenon is well known for the Heisenberg model, see, for instance, [12]. Concerning 
the spectrum of the model these states only lead to a degeneracy of the energy levels. With 
respect to the classification of all eigenstates, however, they do play an important role. 

Thus in the considered model there are no gapless excitations of spin wave type in 
contrast to the antiferromagnetic Heisenberg chain [11-121 and the repulsive Hubbard model 
[ 13-15]. Instead the analogous excitations correspond to collective motions of pseudo- 
particles which can be regarded as new particles with non-zero masses. 

The gap implies'the binding of particles in multiplets of N particles with different 
colours. Any spatial separation of the constituents of these complexes would lead to two 
subsystems of the chain with pariicle numbers not multiples of N. As explained in section 2 
thii results in an increase of the ground state energies by the order of the 'spin-gap', and 
eventually leads to the exponential decay of the corresponding correlation function. 

R Z Bariev et ai 

4. Critical exponents of  the correlation functions 

In the Bethe ansatz approach it is a formidable task to deal with correlation functions. 
However, due to developments in two-dimensional conformal field theory the scaling 
dimensions describing the algebraic decay of correlation functions became accessible 
[16,17]. According to this theory there is a one-to-one correspondence between the scaling 
dimensions and the spectrum of the quantum system on a (periodically closed) finite chain 
[18,191 

Ej and Pj are the energy and momentum of the jth excited state, VF is the Fermi velocity. 
The xj and sj are the scaliig dimensions and 'spins' of the corresponding operators, Nt, 
N- are non-negative integers and d is the number of particles excited from the left Fermi 
point to the right one. The ground state energy is expected to scale as [20,21] 

(22) 

where is the ground state energy per site of the infinite system and c is the central charge 
characterizing the underlying conformal field theory. 

Consequently the scaling dimensions are obtained from the gaps due to finite-size 
effects in the spectrum of the Hamiltonian at criticality. In order to compute the finite- 
size corrections we use a method which has been developed by previous authors for 
the Heisenberg and Hubbard chains [22,23]. As a result we have obtained the ground 
state energy (22) with central charge c = 1 and the finite-size spectrum of the low-lying 
excitations 

Jr VF 
6L Eo = LE- - -C 

2R 
L 

P = 2kFd+ - ( d A N +  N+- N-) kF =To. 
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Here the dressed charge at the Fermi surface e(K) is related in a simple way to the function 
p(k) in (9) 

H K )  = 2 w ( K )  (24) 

and AN is the change of the particle number compared to the ground state. The non- 
negative integers N+ describe the excitations of particle-hole type in the vicinity of the 
Fermi points kkF. Now we can read off all critical exponents from (23) and (21) 

where A N  and d can take the values 

(26) 

generalizing the result in [24] for N = 2. The omitted integer values of correspond 
to excitations with gap which are not related to correlations with algebraic decay. The 
two-point correlation functions of the scaling fields QAi(x, t )  with conformal weights 
A* = ( x  f s)/2 are known to be [16,19] 

1 
mod - 

N 
AJV 
2N 

N = O ,  N,2N, ... d r -  

The dimensions of the descendant fields differ from A* by the integers’ Ne. 
Let us first consider the density-density correlation function. In this case the correlation 

function is determined by excitations with unchanged number ofparticles hnr = 0. The 
leading contributions to the algebraic decay of the correlation are then given by d = 0, 
(N+, N-) = (1,O) or (0, l), and by d = 1/N, N* = 0, respectively. This leads to the 
asymptotic form 

(28) (p(r)p(O)) Y p i  + Alr-’ + A K U  cos(@/N)k~r) 

where 

Field-field correlators decay exponentially as the corresponding excitations change the 
particle number N by one unit, as remarked before. However, we may consider the 
correlation function of a N-multiplet of fields, 

In this case the particle number changes by = N which according to (26) is the smallest 
non-zero value for which we have algebraic decay. We have d = 0 or 1/2N for even or 
odd N, respectively. We thus obtain 
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Figure 2. Upper part: plot of the critical exponenl 
(I for N = 3 and different values of 11 = 0. 0.1, 0.5 

N = 3  
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Figure 3. The charge stiffness (upper part), and the 
effective mass of the charge carriers Oower part) for 

00. For values of (I above the broken line we have 
dominating N-multiplet correlations. lower pm the 
same for N = 4. 

N = 3 and different interanion strengths 'I = 0, 0.1, 
0.5, 1. 10. For particle densities close to 3 and large 
interactions 4 the mass approaches 3 times the bare 
mass mc. 

The characteristic exponent (29) is determined numerically and plotted in figure 2 for the 
cases N = 3,  4. For N = 2 we refer to [ S I .  Analytically we find u(p = 0) = 2 / N Z  
and ( ~ ( p  = N )  = 2. This shows that for all N there exists an interval [pc,  NI for which 
j3 < a. In this case the N-multiplet correlation (31) has a slower decay than the density 
correlation (28) and thus dominates. This might indicate the presence of bound complexes 
of N-multiplets in generalization of bound pairs for N = 2 which has been discussed in [SI. 

In order to get a more complete picture of the physical properties of the model we also 
investigate the conductivity and the effective transport mass. Following the ideas of 125,261 
we study the Hamiltonian (1) with twisted boundary conditions with twisting angle 'p. In 
this case the Bethe ansatz equations read 

The additional phase 0 corresponds to an enclosed magnetic flux in the ring. 
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The conductivity is directly proportional to the charge stiffness (Drude weight) D, which 
can be obtained from the change 

AEo = Dcpz /L  (33) 

in the ground state energy for small p [25]. Using the charge stiffness we can define an 
effective transport mass m by the relation 

where 0," = (N/n)  sin(Jcp/N) is the charge stiffness of the non-interacting (q = 0) system 
and me is the (bare) electron mass. 

Using the result (23) for the finite-size corrections with A N  = 0 and d = p/2x we 
find 

Using the integral equation (9) and (24) we can calculate Dc and m numerically for all 
densities p. see figure 3. For large particle densities p and strong interaction q we observe 
an increase of the mass m by a factor N as compared to the non-interacting case. This is 
consistent with and supports our above picture that bound complexes of N-multiplets are 
present in the system. 

Appendix 

Here we describe the reduction of the Bethe ansatz problem (4) involving kj and A t )  
parameters to equations involving only the k j  variables. To this end we cite a set of 
equations which are equivalent to (4) and which appeared at an intermediate stage of the 
analysis in [lo] 

T l ( u )  is the first of a set of functions ~ ' ( u ) ,  T*(u),  . . . , T ~ - ~ ( u ) ,  satisfying the recursion 

with T N ( u )  1. The 9-functions are given by 

in terms of the parameters A,") which are subject to the condition that all T'(u) be analytic 
functions with simple poles at (i/2)At-i) - q/2. This condition is equivalent to the set of 
Bethe ansatz equations (4). Note that A!' = kj and MN = N. 
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On the right-hand si& of (A2) one of the two summands usually dominates over the 
other. This provides the possibility to derive a simple functional equation for T 1 ( u )  in 
product form 

where the right-hand side depends only on the k, parameters and the corrections to this 
relation are exponentially small in the thermodynamic limit. For the ground state (A4) 
can be solved uniquely (apart from Nth roots of unity) under the condition of analyticity, 
absence of zeros in the physical regime -(N - l ) q  e Re(u) e 7. and the pole structure at 
(i/2)kj - q/2. The result can be written in the form 

2 i r .  I N  
In TI ( i k t  i) = i F j  + T x d ) ( k - k J  j =0,1, ... , N - 1 ' 1 4  

where 
exp(-nq) sinh[nq(N - l)] . 

n sinh(nqN) 
sm(nk) 

Using standard reasoning from this and (AI) one derives the integral equation (9). Note 
that rp(k) = O'(k). The absolute ground state of the system corresponds to the choice of 
j = 0 in (As). Other choices of j lead to excitations with energies of order 1/L and give 
rise to a quantization of the parameter d in (26) in units of 1/N. 

For excitations of spin-wave type it is useful to define the excitation function 

for which (A4) directly implies 

t(u)t(U + q) . . . t(u + ( N  - 1)q) = 1 . (AX) 

A first consequence of this functional equation is the double periodicity of the analytic 
continuation of t (u)  

The elementary spin-wave excitations are characterized by zeros and poles which have to 
appear in pairs uz and U,,. The distance of uZ and up  has to be a multiple of q in order to 
lead to the cancellation (AS). We write 

= i ( q + i 8  r r q / 2 )  r = 1,. . ., N - 1 ( A W  
where 8 is a rapidity variable and takes real numbers. The solution of (AS) under the 
condition of analyticity and the zero/pole structure of (A10) is 

(All) 

where the function on the right-hand side was defined already in (18). Again by standard 
reasoning and (AI) one finds the integral equation (17). It is worth noting that in this 
approach the distribution of A-parameters is quite irrelevant. Different pattems, in particular 
simple holes with or without strings, lead to the same function (All). 

1nt((i/2)k + q/2) = irp"-"(k - 8 )  
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